Distributed DHT & Meta tag web
architecture



Current web 1.0 architecture

e WEB 1.0 is client server architecture
— Thin client just visualize the data

— Web server serving files representing the data.

* Web server may be smart, modifying the data,
depending on input or other (for example extended
with CGI, PHP, Java frameworks, etc)

* Only one web server serves the client. Multiple clients
can be connected to the server. It is pure thin client —
server architecture



Current web 2.0 architecture

One step above the Web 1.0 architecture

The same client-server model, with more smarter clients
that offload part of the work usually done by the server

Client usually run Flash applets or JavaScript/HTML5

Web 2.0 makes the experience more interactive, should
(but it not necessary) decrease the load of the servers,
improve the user experience

Still one server serves multiple clients and we have
classical client server architecture. The security model
expects all client requests to go to the same domain. The
server is expected to be smart and have advanced logic for
advanced applications



Future web 3.0 architecture

* |tis an enhancements over Web 2.0 where we
will have more smarter clients in the browsers,
receiving data from multiple servers and sources
(this require modification to the current html/
javascript security model)

* For example a client may use google docs for
form editing but to post the form on facebook in
a smoothly integrated way

* The model is distributed — a single client may
work with multiple servers. The servers may be
smart, but not as smarter as in web 1.0/2.0



Scalability

* The scalability is related to security, as most of
the current DoS attacks are designated to

affect the capabilities of a server to serve its
content

* More distributed approach (web 3.0 vs web
2.0 vs web 1.0) improves the performance,
scalability and security, but may affect the
stability



BalkanLeaks web client

Web 2.0 application based on HTMLS5 standards

Extremely dummy server — it only store and serve the files,
has no keys and no logic. Can be implemented with CDN
without any logic in the CDN

All the search, decryption is performed in the client

It can work in online and offline mode. In offline mode, all the
data is preloaded in the browser and everything operates
locally. In online mode the data is transferred on demand and
stored in the client. It can work with thinner clients
(smartphones and tablets), preserving the same level of
security with the exception that it rely on a server to serve
the new data and this is a risky point (DoS attacks to the
server may prevent clients to access data. Clients are also
detectable by network sniffing, for some that is monitoring
activity to the server)



The new idea for distributed
infrastructure for Wikileaks
How to implement infrastructure that require
no servers?

How to implement infrastructure that can be
nighly distributed?

How to implement infrastructure dependable
mainly by its users?

Can this infrastructure have also acceptable
security?



Web 3.1

e All the current web models (1.0, 2.0, 3.0) depends
on a single or limited amount of servers. The client
connects to them and retrieve data. The servers
may be distributed by CDN, but at the end the
infrastructure depends on servers, dns protocol, etc

* Lets imagine that we use the network differently —
we use the bittorrent DHT instead of servers but
everything else is the same?



Magnet tag as url

* Imagine, that we replace the HTTP protocol in the
browser uri, with Magnet tag

— Meta tag allow us to use torrent DHT to serve file archives,
without need of having torrent tracker

* You can enter url in the following format:
— magnet:?xt=urn:btih:
956b0722aac4de545d1baed42d7e811b9f2fdeafd/filepath
— Your browser may have integrated DHT torrent client and to
download the file archive stored in the DHT network,

identified by the hash id, and then extract from the inside
the archive the specified file, and then to visualize it



Magnet as URL - advantages

Simple
Conceptual

The DHT network serves the files — no need of
any servers or infrastructure

No need of DNS and domains

Minimize the single point of failure



What the browser will do?

The user enters magnet url

The browser downloads the referenced
archive from the DHT network

The browser extract the referenced file from
the archive

The browser visualize the file content

The downloaded torrent archive will be
seeded as long it is in the browser cache



Follow the traditions

If we compare it to the traditional http, we can assume
that the DHT will represent TCP and web/file server,
the DHT hash in the magnet will be equivalent to the
server hostname, and the file path part will be the file
path part

The traditional html and javascript will work as is and
with the help of HTML5 (see the balkanleaks client
example)

No need of server infrastructure. A single file will be
alive as long as there is even single user that has it in
the browser cache

No need for DNS and domains, so no domain filters



How can we protect the integrity of
the data?

The DHT present transport mechanism
The magnet present addressing scheme

But they do not enforce any security. How can we be
sure that the data is originated by the right source?

HTTP uses SSL/TLS for it, but this can not work for

DHT as DH algorithm can not be implemented
without active server

However, we can use PGP for this, having keys as
certificates the same way as in SSL

We can use the certificates to trust the sources of the
data, and to ensure they are the right one



Advances

* Can be used for any web data not only for
Wikileaks

* Can be the next step of the web 3.1 — fully
distributed system, no servers, easy to scale,
dependable mainly on the users, hard to filter
(with torrent encryption enabled), having
encryption both to the file archive, or to point
to point links for download




What should be done?

Browser should have support for torrent
protocol with DHT and Magnet tag

Browser should support gpg
Browser should have the logic integrated

Modification of the magnet url, to follow the
format of the traditional uri (backslash)



Security issues

DHT is not resilient to smart DoS attacks
Fake DHT clients may “filter” files and hashes

Some can publish different file with the same
hash — no protection against it, only the
integrity verification can prevent spoofing and
fake files, the risks stands

However the DHT advances fast and the
community may fix all the issues



